Workflows

What is a Workflow?
58 Workflows visible to you, out of a total of 96
Stable

COMPSs Matrix Multiplication, out-of-core using files. Hypermatrix size used 2x2 blocks (MSIZE=2), block size used 2x2 elements (BSIZE=2)

Type: COMPSs

Creator: Raül Sirvent

Submitter: Raül Sirvent

DOI: 10.48546/workflowhub.workflow.1046.1

Monte Carlo Pi Estimation Program Description

This program is a Monte Carlo simulation designed to estimate the value of Pi using PyCOMPSs.

Tasks in the Program

  1. Count Points in Circle Task (count_points_in_circle):
  • Generates random points within a square with side length 1.
  • Counts points falling within the inscribed circle (x^2 + y^2 <= 1).
  • Input: Number of points to generate (num_points)
  • Output: Tuple containing count of points within the circle and list of generated ...

Type: COMPSs

Creators: Archit Dabral, Under the guidance of Raül Sirvent

Submitter: Archit Dabral

Stable

Name: Matrix multiplication with Files, reproducibility example, without data persistence Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs

Description

Matrix multiplication is a binary operation that takes a pair of matrices and produces another matrix.

If A is an n×m matrix and B is an m×p matrix, the result AB of their multiplication is an n×p matrix defined only if the number of columns m in A is equal to the number ...

Type: COMPSs

Creator: Raül Sirvent

Submitter: Raül Sirvent

DOI: 10.48546/workflowhub.workflow.839.1

Stable

Name: Matrix multiplication with Files, reproducibility example Contact Person: support-compss@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs

Description

Matrix multiplication is a binary operation that takes a pair of matrices and produces another matrix.

If A is an n×m matrix and B is an m×p matrix, the result AB of their multiplication is an n×p matrix defined only if the number of columns m in A is equal to the number of rows m in B. When multiplying ...

Type: COMPSs

Creator: Raül Sirvent

Submitter: Raül Sirvent

DOI: 10.48546/workflowhub.workflow.838.1

Stable

Name: Incrementation and Fibonacci Access Level: public License Agreement: Apache2 Platform: COMPSs

Description

Brief Overview: Demonstrates COMPSs task parallelism with increment and Fibonacci computations. Helps to understand COMPSs.

Detailed Description:

  1. Performs multiple increments of input values in parallel using COMPSs.
  2. Concurrently calculates Fibonacci numbers using recursive COMPSs tasks.
  3. Demonstrates task synchronization via compss_wait_on.

Execution

...

Type: COMPSs

Creators: Ashish Bhawel, Ashish Bhawel, Uploading this Workflow under the guidance of Raül Sirvent.

Submitter: Ashish Bhawel

Stable

Calculates the Fibonacci series up to a specified length.

Type: COMPSs

Creator: Uploading this Workflow under the guidance of Raül Sirvent.

Submitter: Ashish Bhawel

Stable

Name: Matmul GPU Case 1 Cache-ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

Matmul running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.798.1

Stable

Name: Matmul GPU Case 1 Cache-OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs 3.3 Machine: Minotauro-MN4

Matmul running on the GPU without Cache. Launched using 32 GPUs (16 nodes). Performs C = A @ B Where A: shape (320, 56_900_000) block_size (10, 11_380_000)             B: shape (56_900_000, 10)   block_size (11_380_000, 10)             C: shape (320, 10)                block_size (10, 10) Total dataset size 291 ...

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.797.1

Stable

Name: K-Means GPU Cache OFF Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on GPUs. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 194 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.799.1

Stable

Name: K-Means GPU Cache ON Contact Person: cristian.tatu@bsc.es Access Level: public License Agreement: Apache2 Platform: COMPSs Machine: Minotauro-MN4

K-Means running on the GPU leveraging COMPSs GPU Cache for deserialization speedup. Launched using 32 GPUs (16 nodes). Parameters used: K=40 and 32 blocks of size (1_000_000, 1200). It creates a block for each GPU. Total dataset shape is (32_000_000, 1200). Version dislib-0.9

Average task execution time: 16 seconds

Type: COMPSs

Creators: Cristian Tatu, The Workflows and Distributed Computing Team (https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing/)

Submitter: Cristian Tatu

DOI: 10.48546/workflowhub.workflow.800.1

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH